Normalized solutions for Kirchhoff type equations with combined nonlinearities: The Sobolev critical case

نویسندگان

چکیده

In this paper, we study the Kirchhoff equation with Sobolev critical exponent \begin{document}$ -\left(a+b\int_{ {\mathbb{R}}^3}|\nabla u|^2\right)\Delta u = \lambda u+\mu|u|^{q-2}u+|u|^{4}u\ \ {\rm in}\ {\mathbb{R}}^3 $\end{document} under normalized constraint$ \int_{ {\mathbb{R}}^3}u^2 c^2, $where a, \, b, c>0 are constants, \lambda, \mu\in{\mathbb{R}} and 2<q<6 $\end{document}. The number 2+8/3 behaves as L^2 $\end{document}-critical for above problem. When \mu>0 $\end{document}, distinguish problem into four cases: 2<q<2+4/3 q 2+4/3 2+4/3<q<2+8/3 2+8/3\leq q<6 prove existence multiplicity of solutions suitable assumptions on \mu c solution obtained is either a minimum (local or global) mountain pass solution. \mu\leq 0 establish nonexistence nonnegative solutions. Finally, investigate asymptotic behavior \mu\to0^+ b\to0^+ respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

MULTIPLICITY RESULTS FOR A CLASS OF p(x)-KIRCHHOFF TYPE EQUATIONS WITH COMBINED NONLINEARITIES

Using the mountain pass theorem combined with the Ekeland variational principle, we obtain at least two distinct, non-trivial weak solutions for a class of p(x)-Kirchhoff type equations with combined nonlinearities. We also show that the similar results can be obtained in the case when the domain has cylindrical symmetry.

متن کامل

positive solutions for asymptotically periodic kirchhoff-type equations with critical growth

in this paper‎, ‎we consider the following kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$uin h^{1}(mathbb{r}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎the aim of this paper is to study the existence of positive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2023

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2023035